Purpose: Presence of pelvic lymph node metastases is the main prognostic factor in early-stage cervical cancer patients, primarily treated with surgery. Aim of this study was to identify cellular tumor pathways associated with pelvic lymph node metastasis in early-stage cervical cancer.
Experimental design: Gene expression profiles (Affymetrix U133 plus 2.0) of 20 patients with negative (N(0)) and 19 with positive lymph nodes (N(+)), were compared with gene sets that represent all 285 presently available pathway signatures. Validation immunostaining of tumors of 274 consecutive early-stage cervical cancer patients was performed for representatives of the identified pathways.
Results: Analysis of 285 pathways resulted in identification of five pathways (TGF-β, NFAT, ALK, BAD, and PAR1) that were dysregulated in the N(0), and two pathways (β-catenin and Glycosphingolipid Biosynthesis Neo Lactoseries) in the N(+) group. Class comparison analysis revealed that five of 149 genes that were most significantly differentially expressed between N(0) and N(+) tumors (P < 0.001) were involved in β-catenin signaling (TCF4, CTNNAL1, CTNND1/p120, DKK3, and WNT5a). Immunohistochemical validation of two well-known cellular tumor pathways (TGF-β and β-catenin) confirmed that the TGF-β pathway (positivity of Smad4) was related to N(0) (OR: 0.20, 95% CI: 0.06-0.66) and the β-catenin pathway (p120 positivity) to N(+) (OR: 1.79, 95%CI: 1.05-3.05).
Conclusions: Our study provides new, validated insights in the molecular mechanism of lymph node metastasis in cervical cancer. Pathway analysis of the microarray expression profile suggested that the TGF-β and p120-associated noncanonical β-catenin pathways are important in pelvic lymph node metastasis in early-stage cervical cancer.
©2011 AACR.