The present study is aimed to design a prototype of hybrid silicon-muscle cell junction, analog to an artificial neuromuscular junction prototype and relevant to the development of advanced neuro-prostheses and bionic systems. The device achieves focal Electric Capacitive Stimulation (ECS) by coupling of single cells and semiconductors, without electrochemical reaction with the substrate. A voltage change applied to a stimulation spot beneath an electrogenic cell leads to a capacitive current (charge accumulation) that opens voltage-gated ion channels in the membrane and generates an action potential. The myo-electronic junction was employed to chronically stimulate muscle cells via ECS and to induce cytosolic calcium transients in myotubes, fibers isolated from mouse FDB (fast [Ca(2+)](i) transients) and surprisingly also in undifferentiated myoblasts (slow [Ca(2+)](i) waves). The hybrid junction elicited, via chronic ECS, a differential reprogramming of single muscle cells by inducing early muscle contraction maturation and plasticity effects, such as NFAT-C3 nuclear translocation. In addition, in the presence of agrin, chronic ECS induced a modulation of AchR clustering which simulates in vitro synaptogenesis. This methodology can coordinate the myogenic differentiation, thus offering direct but non-invasive single cell/wiring, providing a platform for regenerative medicine strategies.
Copyright © 2011 Elsevier Ltd. All rights reserved.