Relationship between dose rate of [6RS]Leucovorin administration, plasma concentrations of reduced folates, and pools of 5,10-methylenetetrahydrofolates and tetrahydrofolates in human colon adenocarcinoma xenografts

Cancer Res. 1990 Jun 15;50(12):3493-502.

Abstract

[6RS]Leucovorin (5-formyltetrahydrofolate; 5-CHO-H4PteGlu) administered in different regimens in combination with 5-fluorouracil (FUra) has increased the response rates to FUra in patients with colon adenocarcinoma. Using preclinical models of human colon adenocarcinomas as xenografts in immune-deprived mice, the effect of the rate of administration of racemic [6RS]leucovorin on the concentration-time profile of reduced folates in plasma, size of intratumor pools of 5,10-methylenetetrahydrofolates (CH2-H4PteGlun) and tetrahydrofolates (H4PteGlun), and the distribution of their polyglutamate species have been examined. Bolus injection i.v., or 4-h or 24-h infusion of [6RS]leucovorin (500 mg/m2) yielded similar concentration profiles of the biologically active [6S] and inactive [6R] isomers of 5-CHO-H4-PteGlu and 5-methyltetrahydrofolate (5-CH3-H4PteGlu) in mouse plasma to those previously reported in humans, but with more rapid elimination half-lives (t1/2 = 11 to 16 min, 23 to 41 min, and 30 to 35 min, respectively). Thus, reduced folates remained elevated in plasma during the period of [6RS]leucovorin administration. In HxELC2 and HxGC3 tumors, pools of CH2-H4PteGlun and H4PteGlun were increased from 350% to 700% of control, but only during [6RS]leucovorin infusion. Intracellular levels subsequently declined rapidly, similar to the loss of reduced folates from plasma. Increasing the rate of [6RS]leucovorin delivery by decreasing the time for administration from a 24-h to a 4-h infusion did not further increase the intratumor pools of CH2-H4PteGlun and H4PteGlun, suggesting saturation in the cellular metabolism of [6RS]leucovorin. In HxGC3 tumors, CH2-H4PteGlu4-5 were elevated more rapidly than in line HxELC2, which accumulated predominantly a shorter chain length species following i.v. bolus injection. During the 4-h infusion schedule, di- and triglutamate species in particular accumulated in both tumors with no elevation in CH2-H4PteGlu5 until the infusion was discontinued, when this species increased as the shorter chain length forms were declining. However, during the 24-h infusion of [6RS]leucovorin, CH2-H4PteGlu3-5 were elevated in tumors. Since these species have been reported to increase the binding affinity of [6-3H]5-fluorodeoxyuridine monophosphate ([6-3H]FdUMP) to thymidylate synthase, and intratumor pools of CH2-H4PteGlun and H4PteGlun were elevated during the 24-h infusion of [6RS]leucovorin, this was considered to be the preferred schedule for administration.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenocarcinoma / blood
  • Adenocarcinoma / metabolism*
  • Animals
  • Colonic Neoplasms / blood
  • Colonic Neoplasms / metabolism*
  • Female
  • Floxuridine / administration & dosage
  • Floxuridine / blood
  • Floxuridine / metabolism*
  • Floxuridine / pharmacology
  • Half-Life
  • Humans
  • Injections, Intravenous
  • Leucovorin / administration & dosage
  • Leucovorin / blood
  • Leucovorin / pharmacology*
  • Mice
  • Mice, Inbred CBA
  • Tetrahydrofolates / blood*
  • Thymidylate Synthase / antagonists & inhibitors*
  • Thymidylate Synthase / blood
  • Time Factors

Substances

  • Tetrahydrofolates
  • Floxuridine
  • 5,10-methylenetetrahydrofolic acid
  • Thymidylate Synthase
  • Leucovorin
  • 5-methyltetrahydrofolate