Objective: We investigated effects of 3 weekly courses of fetal betamethasone (βM) on motivation and cognition in juvenile baboon offspring utilizing the Cambridge Neuropsychological Test Automated Battery.
Study design: Pregnant baboons (Papio species) received 2 injections of saline control or 175 μg/kg βM 24 hours apart at 0.6, 0.65, and 0.7 gestation. Offspring (saline control female, n = 7 and saline control male, n = 6; βM female [FβM], n = 7 and βM male [MβM], n = 5) were studied at 2.6-3.2 years with a progressive ratio test for motivation, simple discriminations and reversals for associative learning and rule change plasticity, and an intra/extradimensional set-shifting test for attention allocation.
Results: βM exposure decreased motivation in both sexes. In intra/extradimensional testing, FβM made more errors in the simple discrimination reversal (mean difference of errors [FβM - MβM] = 20.2 ± 9.9; P ≤ .05), compound discrimination (mean difference of errors = 36.3 ± 17.4; P ≤ .05), and compound reversal (mean difference of errors = 58 ± 23.6; P < .05) stages as compared to the MβM offspring.
Conclusion: This central nervous system developmental programming adds growing concerns of long-term effects of repeated fetal synthetic glucocorticoid exposure. In summary, behavioral effects observed show sex-specific differences in resilience to multiple fetal βM exposures.
Copyright © 2011 Mosby, Inc. All rights reserved.