PI3 Kinase inhibition on TRAIL-induced apoptosis correlates with androgen-sensitivity and p21 expression in prostate cancer cells

Apoptosis. 2011 Jun;16(6):627-35. doi: 10.1007/s10495-011-0591-3.

Abstract

TNF-related apoptosis-inducing ligand (TRAIL) can induce apoptosis in many types of cancer cells. TRAIL is considered a therapeutic target, therefore, it was of interest to examine molecular mechanisms that may modulate sensitivity to TRAIL signaling in prostate cancer cells. LNCaP cells were found to be relatively resistant to TRAIL induced cell death while PC3 cells were sensitive. PI3-kinase (PI3 K) inhibitors were able to render LNCaP cells sensitive to TRAIL but conferred resistance to PC3 cells. PI3 K inhibitors were associated with an increase in p21(waf1, cip1) expression in PC3 cells where as p21 decreases in LNCaP cells suggesting that p21 may impart TRAIL resistance. Since androgen receptor (AR) signaling can be modulated by AKT, and p21 is an AR responsive gene, the impact of PI3 K inhibition on TRAIL sensitivity was evaluated in AR transfected PC3 cells (PC3AR). The expression of AR was significantly downregulated by PI3 K inhibition in LNCaP cells, which have an intact AR signaling axis. PC3AR cells expressed higher levels of p21 protein and were relatively resistant to TRAIL compared to control cells. Finally, using adenoviral p21 gene transfer we directly demonstrated that p21 can confer resistance to TRAIL-induced cell death. These results suggest that TRAIL resistance is not regulated simply by a PI3 K/AKT survival pathway associated with inactivating PTEN mutations but may also be modulated by downstream AR responsive targets such as p21. These findings may have significant clinical implications for the utility of TRAIL in the management of prostate cancer.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Androgens / metabolism*
  • Apoptosis*
  • Cell Line, Tumor
  • Cyclin-Dependent Kinase Inhibitor p21 / genetics*
  • Cyclin-Dependent Kinase Inhibitor p21 / metabolism
  • Down-Regulation*
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Male
  • Phosphatidylinositol 3-Kinases / genetics
  • Phosphatidylinositol 3-Kinases / metabolism*
  • Phosphoinositide-3 Kinase Inhibitors
  • Prostatic Neoplasms / enzymology
  • Prostatic Neoplasms / genetics
  • Prostatic Neoplasms / metabolism*
  • Receptors, Androgen / genetics
  • Receptors, Androgen / metabolism
  • Signal Transduction
  • TNF-Related Apoptosis-Inducing Ligand / metabolism*

Substances

  • AR protein, human
  • Androgens
  • CDKN1A protein, human
  • Cyclin-Dependent Kinase Inhibitor p21
  • Phosphoinositide-3 Kinase Inhibitors
  • Receptors, Androgen
  • TNF-Related Apoptosis-Inducing Ligand