Background: Cytokines and chemokines during perinatal period may involve the neurological development of newborns.
Aims: We investigated the association of circulating chemokines during neonatal period with the outcome of premature infants.
Study design: The prospective study enrolled 29 very low birth weight (<1500 g) and appropriate-for-date infants having no underlying diseases. Serum concentrations of chemokines (CXCL8, CXCL9, CXCL10 and CCL2) and cytokines at birth and 4 weeks postnatal age were measured. Developmental quotients (DQ) at 3 years of age by the Kyoto Scale of Psychological Development were studied for the association with chemokine/cytokine levels and clinical variables including chorioamnionitis, Apgar scores, ventilator treatment and supplemental oxygen.
Results: CXCL8 levels at birth and days of ventilator treatment were negatively, CCL2 levels at 4 weeks after birth and 5-minute Apgar scores were positively correlated with the DQ of postural-motor [P-M] area at 3 years of age, respectively (CXCL8: correlation coefficient [CC]=-0.394, p=0.037, ventilation: CC=-0.518, p=0.006, CCL2: CC=0.528, p=0.013, and Apgar score: CC=0.521, p=0.005). Infants showing both ≥50 pg/ml of CXCL8 at birth and <250 pg/ml of CCL2 4 weeks after birth had lower DQ of P-M than those who did not (p<0.001). Multivariate analyses indicated that CCL2 levels at 4 weeks of age were higher in infants who attained normal DQ of P-M (≥85) (adjusted mean, 338.4 [95% confidence interval, 225.5-507.8]) than in those who did not (<85) (159.0, [108.2-233.7]) (p=0.019).
Conclusion: Circulating patterns of CXCL8 (IL-8) and CCL2 (MCP-1) during the neonatal period might affect the neurological development of preterm infants.
Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.