The nuclear envelope (NE) physically separates nucleoplasm and cytoplasm, contributes to nuclear structural integrity, controls selective bidirectional transport of ions and macromolecular cargo, regulates gene expression, and acts as a mechanotransducer and a platform for signalling. It is noteworthy however that the NE is not simply a smooth-surfaced outer boundary but is interrupted by invaginations that reach deep within the nucleoplasm and could even traverse the nucleus completely. The existence of such a complex branched network of invaginations forming a nucleoplasmic reticulum (NR) provides sites that are capable of carrying out the 'conventional' NE functions deep within the nucleus in regions that would otherwise be remote from the nuclear periphery. In this review, we describe the structural features of NR in normal and pathological states and discuss the current understanding of their functional and possible pathological roles.
Copyright © 2011 Elsevier Ltd. All rights reserved.