Context: Adenocarcinoma of the breast is the most frequent cancer affecting women in both developed and developing regions of the world. From the moment of clinical presentation until the time of pathologic diagnosis, patients affected by this disease will face daunting questions related to prognosis and treatment options. While improvements in targeted therapies have led to increased patient survival, these same advances have created the imperative to accurately stratify patients to achieve maximum therapeutic efficacy while minimizing side effects. In this evolving era of personalized medicine, there is an ever-increasing need to overcome the limitations of traditional diagnostic practice.
Objective: To summarize the molecular diagnostics traditionally used to guide prognostication and treatment of breast carcinomas, to highlight published data on the molecular classification of these tumors, and to showcase molecular assays that will supplement traditional methods of categorizing the disease.
Data sources: A review of the literature covering the molecular diagnostics of breast carcinomas with a focus on the gene expression and array studies used to characterize the molecular signatures of the disease. Special emphasis is placed on summarizing evolving technologies useful in the diagnosis and characterization of breast carcinoma.
Conclusions: Available and emerging molecular resources will allow pathologists to provide superior diagnostic, prognostic, and predictive information about individual breast carcinomas. These advances should translate into earlier identification and tailored therapy and should ultimately improve outcome for patients affected by this disease.