Hydrogen-bonding networks and RNA bases revealed by cryo electron microscopy suggest a triggering mechanism for calcium switches

Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9637-42. doi: 10.1073/pnas.1018104108. Epub 2011 May 17.

Abstract

Helical assemblies such as filamentous viruses, flagella, and F-actin represent an important category of structures in biology. As the first discovered virus, tobacco mosaic virus (TMV) was at the center of virus research. Previously, the structure of TMV was solved at atomic detail by X-ray fiber diffraction but only for its dormant or high-calcium-concentration state, not its low-calcium-concentration state, which is relevant to viral assembly and disassembly inside host cells. Here we report a helical reconstruction of TMV in its calcium-free, metastable assembling state at 3.3 Å resolution by cryo electron microscopy, revealing both protein side chains and RNA bases. An atomic model was built de novo showing marked differences from the high-calcium, dormant-state structure. Although it could be argued that there might be inaccuracies in the latter structure derived from X-ray fiber diffraction, these differences can be interpreted as conformational changes effected by calcium-driven switches, a common regulatory mechanism in plant viruses. Our comparisons of the structures of the low- and high-calcium states indicate that hydrogen bonds formed by Asp116 and Arg92 in the place of the calcium ion of the dormant (high-calcium) state might trigger allosteric changes in the RNA base-binding pockets of the coat protein. In turn, the coat protein-RNA interactions in our structure favor an adenine-X-guanine (A*G) motif over the G*A motif of the dormant state, thus offering an explanation underlying viral assembly initiation by an AAG motif.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Calcium / chemistry
  • Calcium / metabolism
  • Capsid Proteins / chemistry
  • Capsid Proteins / metabolism
  • Capsid Proteins / ultrastructure
  • Cryoelectron Microscopy / methods*
  • Hydrogen Bonding
  • Models, Molecular
  • Nucleic Acid Conformation
  • Protein Structure, Secondary
  • RNA, Viral / chemistry
  • RNA, Viral / metabolism
  • RNA, Viral / ultrastructure*
  • Tobacco Mosaic Virus / genetics
  • Tobacco Mosaic Virus / physiology
  • Tobacco Mosaic Virus / ultrastructure*
  • Viral Proteins / chemistry
  • Viral Proteins / metabolism
  • Viral Proteins / ultrastructure*
  • Virus Assembly
  • X-Ray Diffraction / methods

Substances

  • Capsid Proteins
  • RNA, Viral
  • Viral Proteins
  • Calcium

Associated data

  • PDB/3J06
  • PDB/EMD-5185