A rarely challenged dogma in cell-mediated immune (CMI) assays is the incubation temperature, 37°C. Fever augments proinflammatory immune responses in vivo, and the aim of this study was to explore whether incubation at fever-range temperature could increase antigen-specific biomarker responses. We compared CMI responses following incubation of whole blood at 37°C and 39°C. Whole blood was obtained from (i) 34 healthy subjects whose blood was incubated with TB10.4 antigen, present in the Mycobacterium bovis bacillus Calmette-Guérin vaccine and many environmental mycobacteria; (ii) 8 TB patients and 8 controls incubated with Mycobacterium tuberculosis-specific antigens in the QuantiFERON-TB Gold test (QFT-IT); and (iii) from both groups incubated with a T cell mitogen. T cell responses (gamma interferon [IFN-γ]) and responses from antigen-presenting cells (IFN-γ-induced protein 10 [IP-10]) were determined. We further evaluated the effect of adding interleukin-7 (IL-7) and blocking IL-10 during incubation. In TB patients, IFN-γ and IP-10 levels were increased 4.1- and 3.4-fold, respectively, at 39°C incubation (P < 0.001). Similar results were seen after mitogen stimulation. In subjects responding to TB10.4, the effects were less pronounced and significant only for IP-10. Incubation at 39°C increased IP-10 and IFN-γ responsiveness to both antigens and mitogen in persons with baseline or initial low responses. Adding IL-7 and blocking IL-10 augmented the effects in synergy with fever-range temperature. Incubation at fever-range temperature vividly increases CMI responsiveness to antigen stimulation in vitro in tuberculosis patients and may increase the sensitivity of CMI assays.