Hypoxic induction of vascular endothelial growth factor regulates murine hematopoietic stem cell function in the low-oxygenic niche

Blood. 2011 Aug 11;118(6):1534-43. doi: 10.1182/blood-2011-01-332890. Epub 2011 Jun 13.

Abstract

Hypoxia is emerging as an important characteristic of the hematopoietic stem cell (HSC) niche, but the molecular mechanisms contributing to quiescence, self-renewal, and survival remain elusive. Vascular endothelial growth factor A (VEGFA) is a key regulator of angiogenesis and hematopoiesis. Its expression is commonly regulated by hypoxia-inducible factors (HIF) that are functionally induced in low-oxygen conditions and that activate transcription by binding to hypoxia-response elements (HRE). Vegfa is indispensable for HSC survival, mediated by a cell-intrinsic, autocrine mechanism. We hypothesized that a hypoxic HSC microenvironment is required for maintenance or up-regulation of Vegfa expression in HSCs and therefore crucial for HSC survival. We have tested this hypothesis in the mouse model Vegfa(δ/δ), where the HRE in the Vegfa promoter is mutated, preventing HIF binding. Vegfa expression was reduced in highly purified HSCs from Vegfa(δ/δ) mice, showing that HSCs reside in hypoxic areas. Loss of hypoxia-regulated Vegfa expression increases the numbers of phenotypically defined hematopoietic stem and progenitor cells. However, HSC function was clearly impaired when assessed in competitive transplantation assays. Our data provide further evidence that HSCs reside in a hypoxic microenvironment and demonstrate a novel way in which the hypoxic niche affects HSC fate, via the hypoxia-VEGFA axis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Hypoxia
  • Cells, Cultured
  • Female
  • Flow Cytometry
  • Gene Expression
  • Genotype
  • Growth Plate / blood supply
  • Growth Plate / growth & development
  • Hematopoiesis / genetics
  • Hematopoietic Stem Cell Transplantation
  • Hematopoietic Stem Cells / cytology
  • Hematopoietic Stem Cells / metabolism*
  • Hexokinase / genetics
  • Hexokinase / metabolism
  • Hypoxia-Inducible Factor 1, alpha Subunit / genetics
  • Hypoxia-Inducible Factor 1, alpha Subunit / metabolism
  • Liver / cytology
  • Liver / embryology
  • Liver / metabolism
  • Male
  • Mice
  • Mice, 129 Strain
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Oxygen / metabolism*
  • Phosphoglycerate Kinase / genetics
  • Phosphoglycerate Kinase / metabolism
  • Reverse Transcriptase Polymerase Chain Reaction
  • Stem Cell Niche / cytology
  • Stem Cell Niche / metabolism*
  • Vascular Endothelial Growth Factor A / genetics*
  • Vascular Endothelial Growth Factor A / metabolism

Substances

  • Hypoxia-Inducible Factor 1, alpha Subunit
  • Vascular Endothelial Growth Factor A
  • vascular endothelial growth factor A, mouse
  • Hexokinase
  • Pgk1 protein, mouse
  • Phosphoglycerate Kinase
  • Oxygen