We show that apidaecin binds to human macrophages, monocytes and dendritic cells, displaying different intracellular distributions and inducing diversified effects. An apidaecin-cell association was detectable at concentrations as low as 5 μM and increased without saturation until 60 μM, was receptor independent and required a physiological temperature (37°C). For apidaecin, cytosolic localization was prevalent in macrophages and endosomal localization in monocytes, and associations with the plasma membrane were predominant in dendritic cells. Apidaecin upregulated T-lymphocyte co-stimulatory molecule CD80 and cytokine/chemokine production in macrophages, but not in monocytes and dendritic cells. Suboptimal stimulatory doses (5-10 μM) of apidaecin partially inhibited the lipopolysaccharide (LPS)-induced increase in major histocompatibility complex class II (MHCII) and CD86 in macrophages, and the release of selected cytokines/chemokines by both macrophages [interleukin (IL)-6 and tumor necrosis factor (TNF)-α] and monocytes [IL-6, TNF-α, basic fibroblast growth factor (FGF) and eotaxin]. Apidaecin had a double-edged effect: at low concentrations it partially antagonized LPS-stimulatory effects on both macrophages and monocytes while it stimulated pro-inflammatory and pro-immune functions of macrophages at higher concentrations.
Copyright © 2011 S. Karger AG, Basel.