Insights into the micromechanical properties of the metaphase spindle

Cell. 2011 Jun 24;145(7):1062-74. doi: 10.1016/j.cell.2011.05.038.

Abstract

The microtubule-based metaphase spindle is subjected to forces that act in diverse orientations and over a wide range of timescales. Currently, we cannot explain how this dynamic structure generates and responds to forces while maintaining overall stability, as we have a poor understanding of its micromechanical properties. Here, we combine the use of force-calibrated needles, high-resolution microscopy, and biochemical perturbations to analyze the vertebrate metaphase spindle's timescale- and orientation-dependent viscoelastic properties. We find that spindle viscosity depends on microtubule crosslinking and density. Spindle elasticity can be linked to kinetochore and nonkinetochore microtubule rigidity, and also to spindle pole organization by kinesin-5 and dynein. These data suggest a quantitative model for the micromechanics of this cytoskeletal architecture and provide insight into how structural and functional stability is maintained in the face of forces, such as those that control spindle size and position, and can result from deformations associated with chromosome movement.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Biomechanical Phenomena
  • Cell Extracts / chemistry
  • Dyneins / physiology
  • Elasticity
  • Kinesins / physiology
  • Metaphase*
  • Microtubules / physiology
  • Ovum / chemistry
  • Spindle Apparatus / chemistry*
  • Spindle Apparatus / physiology*
  • Xenopus Proteins / physiology
  • Xenopus laevis / physiology*

Substances

  • Cell Extracts
  • KIF11 protein, Xenopus
  • Xenopus Proteins
  • Dyneins
  • Kinesins