Objectives: This paper suggests the experimental guidelines to evaluate the electro-mechanical safety of belt type equipment. The electro-mechanical safety was determined by using the International Electrotechnical Commission guidelines, which are widely used as important factors for assessing the electro-mechanical safety of belt type equipment. However, the local guidelines on wearable healthcare sensors are currently not well-established. Therefore, safety guidelines suited for the actual circumstances in Korea are required, and this paper attempts to try a new experimental safety test procedure of the wearable healthcare sensor.
Methods: This belt type device measures the electrocardiogram (ECG) and heart rates by attaching to the chest. Examination lists were selected by analyzing the common standards ofelectro-mechanical safety (IEC 60601-1) and environment tests (IEC 60068-1, IEC 60068-2) of home-healthcare equipment.
Results: The essential electrical safety, which was required for the RS300G3 as a medical device, was evaluated, and most of the examination lists were selected by considering the circumstances of the users. The device passed all the selected examinable lists that are applicable to the Korean environment.
Conclusions: This study has limitations to estimate and to conduct electro-mechanical safety experiments because our study focused on the belt type of heart-rates equipment. We are not taking into account the overall electro-mechanical home-healthcare measurements. According to industrial and technological development, there are infinite possibilities for the advancement of home-healthcare equipment, so more examination lists for safety are being added in addition to what we have done.
Keywords: Electro Medical Device; Electrochemical Techniques; Equipment Safety; Home-Healthcare Device; Standards.