P-selectin expression is involved in the pathophysiology of biologically active arterial thrombus and endothelial activation after a transient ischemic event. Fucoidan is a polysaccharidic ligand of P-selectin, with a nanomolar affinity. In the present study, we propose a new approach of P-selectin molecular imaging based on radiolabeled fucoidan.
Methods: Two kinds of experimental models were selected to evaluate the ability of radiolabeled fucoidan to detect P-selectin expression: platelet-rich arterial thrombi (vegetations of infective endocarditis and arterial mural thrombus) and myocardial ischemia-reperfusion. These 2 settings were chosen because they were clinically relevant, and both were associated with an important overexpression of platelet and endothelial P-selectin, respectively.
Results: (99m)Tc-fucoidan SPECT was able to detect the presence of platelet-rich arterial thrombi in all animals, with a median target-to-background ratio of 5.2 in vegetations of endocarditis and 3.6 in mural aneurysmal thrombus, and to detect a persistent endothelial activation at 2 h after reperfusion. In this latter model, the magnitude of the signal was correlated with the extent of myocardium that underwent transient ischemia. The sensitivity of selectivity of the uptake and retention of (99m)Tc-fucoidan in both settings was excellent.
Conclusion: This study supports (99m)Tc-fucoidan as a relevant imaging agent for in vivo detection of biologic activities associated with P-selectin overexpression, such as arterial thrombus and ischemic memory. Given the reported wide availability at a low cost, and its low toxicity, fucoidan seems to overcome some of the limitations of previous P-selectin-targeted imaging agents.