Interferon regulatory factor (IRF)-4 is a member of the IRF transcription factor family, whose expression is primarily restricted to lymphoid and myeloid cells. In T-cells, IRF-4 expression is induced by T-cell receptor (TCR) cross-linking or treatment with phorbol-12-myristate-13-acetate (PMA)/Ionomycin, and IRF-4 is thought to be a critical factor for various functions of T-cells. To elucidate the IRF-4 functions in human adult T-cell leukemia virus type 1 (HTLV-1)-infected T-cells, which constitutively express IRF-4, we isolated IRF-4-binding proteins from T-cells, using a tandem affinity purification (TAP)-mass spectrometry strategy. Fourteen proteins were identified in the IRF-4-binding complex, including endogenous IRF-4 and the nuclear factor-kappaB (NF-κB) family member, c-Rel. The specific association of IRF-4 with c-Rel was confirmed by immunoprecipitation experiments, and IRF-4 was shown to enhance the c-Rel-dependent binding and activation of the interleukin-4 (IL-4) promoter region. We also demonstrated that IL-2 production was also enhanced by exogenously-expressed IRF-4 and c-Rel in the presence of P/I, in T-cells, and that the optimal IL-2 and IL-4 productions in vivo was IRF-4-dependent using IRF-4-/- mice. These data provide molecular evidence to support the clinical observation that elevated expression of c-Rel and IRF-4 is associated with the prognosis in adult T-cell leukemia/lymphoma (ATLL) patients, and present possible targets for future gene therapy.
Copyright © 2011 Elsevier Ltd. All rights reserved.