Dysregulated Notch signaling plays an important role in the progression of cancer. Notch signaling affects tumor growth and angiogenesis through the actions of its ligand Jagged-1. In this study, we developed a novel compound 3,5-bis(2,4-difluorobenzylidene)-4-piperidone (DiFiD) and determined that it inhibits cancer cell growth and its effects on Notch signaling. Intraperitoneal administration of DiFiD significantly suppressed growth of pancreatic cancer tumor xenografts. There was a reduction in CD31-positive blood vessels, suggesting that there was an effect on angiogenesis. In vitro, DiFiD inhibited the proliferation of various human and mouse pancreatic cancer cells while increasing activated caspase-3. Cell-cycle analyses showed that DiFiD induced G(2)-M arrest and decreased the expression of cell-cycle-related proteins cyclin A1 and D1 while upregulating cyclin-dependent kinase inhibitor p21WAF1. We next determined the mechanism of action. DiFiD reduced Notch-1 activation, resulting in reduced expression of its downstream target protein Hes-1. We further determined that the reduced Notch-1 activation was due to reduction in the ligand Jagged-1 and two critical components of the γ-secretase enzyme complex presenilin-1 and nicastrin. Ectopic expression of the Notch intracellular domain rescued the cells from DiFiD-mediated growth suppression. DiFiD-treated tumor xenografts also showed reduced levels of Jagged-1 and the γ-secretase complex proteins presenilin-1 and nicastrin. Taken together, these data suggest that DiFiD is a novel potent therapeutic agent that can target different aspects of the Notch signaling pathway to inhibit both tumor growth and angiogenesis.