Antistaphylococcal activities of the new fluoroquinolone JNJ-Q2

Antimicrob Agents Chemother. 2011 Dec;55(12):5512-21. doi: 10.1128/AAC.00470-11. Epub 2011 Sep 12.

Abstract

The new broad-spectrum fluoroquinolone JNJ-Q2 displays in vitro activity against Gram-negative and Gram-positive organisms, including methicillin-resistant Staphylococcus aureus (MRSA) and ciprofloxacin-resistant MRSA isolates. Tested with isogenic methicillin-susceptible S. aureus (MSSA) and MRSA strains bearing quinolone-resistant target mutations, JNJ-Q2 displayed MICs ≤ 0.12 μg/ml, values 16- to 32-fold lower than those determined for moxifloxacin. Overexpression of the NorA efflux pump did not impact JNJ-Q2 MICs. Inhibition of S. aureus DNA gyrase and DNA topoisomerase IV enzymes demonstrated that JNJ-Q2 was more potent than comparators against wild-type enzymes and enzymes carrying quinolone-resistant amino acid substitutions, and JNJ-Q2 displayed equipotent activity against both enzymes. In serial-passage studies comparing resistance selection in parallel MRSA cultures by ciprofloxacin and JNJ-Q2, ciprofloxacin readily selected for mutants displaying MIC values of 128 to 512 μg/ml, which were observed within 18 to 24 days of passage. In contrast, cultures passaged in the presence of JNJ-Q2 displayed MICs ≤ 1 μg/ml for a minimum of 27 days of serial passage. A mutant displaying a JNJ-Q2 MIC of 4 μg/ml was not observed until after 33 days of passage. Mutant characterization revealed that ciprofloxacin-passaged cultures with MICs of 256 to 512 μg/ml carried only 2 or 3 quinolone resistance-determining region (QRDR) mutations. Cultures passaged with JNJ-Q2 selection for up to 51 days displayed MICs of 1 to 64 μg/ml and carried between 4 and 9 target mutations. Established in vitro biofilms of wild-type or ciprofloxacin-resistant MRSA exposed to JNJ-Q2 displayed greater decreases in bacterial counts (7 days of exposure produced 4.5 to >7 log(10) CFU decreases) than biofilms exposed to ciprofloxacin, moxifloxacin, rifampin, or vancomycin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology*
  • Biofilms / drug effects
  • Biofilms / growth & development
  • Ciprofloxacin / pharmacology
  • DNA Gyrase / genetics
  • DNA Topoisomerase IV / genetics
  • Drug Resistance, Bacterial / genetics
  • Fluoroquinolones / chemistry
  • Fluoroquinolones / pharmacology*
  • Humans
  • Methicillin / pharmacology
  • Methicillin-Resistant Staphylococcus aureus / drug effects*
  • Methicillin-Resistant Staphylococcus aureus / growth & development
  • Microbial Sensitivity Tests / statistics & numerical data
  • Mutation
  • Serial Passage
  • Staphylococcus aureus / drug effects*
  • Staphylococcus aureus / growth & development

Substances

  • 7-(3-(2-amino-1-fluoroethylidene)-1-piperidinyl)-1-cyclopropyl-6-fluoro-1,4-dihydro-8-methoxy-4-oxo-3-quinolinecarboxylic acid
  • Anti-Bacterial Agents
  • Fluoroquinolones
  • Ciprofloxacin
  • DNA Topoisomerase IV
  • DNA Gyrase
  • Methicillin