Characterization of the potential minimum of the F '0(u)(+)(1D2) ion-pair state of Cl2 using (1 + 2') optical-optical double resonance excitation and mass-resolved ion detection

J Chem Phys. 2011 Sep 14;135(10):104302. doi: 10.1063/1.3625956.

Abstract

Vibrational levels of the F(')0(u)(+)((1)D(2)), F0(u)(+)((3)P(0)), and D0(u)(+)((3)P(2)) ion-pair states of (35)Cl(2) and (35)Cl(37)Cl in the range 62,500-67,600 cm(-1) have been observed using (1 + 2(')) optical-optical double resonance excitation with mass-resolved ion detection. The strong F(')0(u)(+)((1)D(2))/F0(u)(+)((3)P(0)) coupling has been modelled by a coupled two-state calculation. An optimized fit of the experimental data used an F(')0(u)(+)((1)D(2)) state potential with a T(e) of 65,177 cm(-1) and an R(e) of ≈2.636 Å with a coupling constant of ≈430 cm(-1). The calculation assigns the first observed members of the F(')0(u)(+)((1)D(2)) state progression of (35)Cl(2) and (35)Cl(37)Cl at 64,998 and 65,094 cm(-1), respectively, as transitions to v = 0.