The urokinase receptor (u-PAR) which is largely regulated at the transcriptional level has been implicated in tumor progression. In this study, we explored the epigenetic regulation of u-PAR and showed that the histone variant H2A.Z negatively regulates its expression in multiple cell lines. Chromatin immunoprecipitation assays revealed that H2A.Z was enriched at previously characterized u-PAR-regulatory regions (promoter and a downstream enhancer) and dissociates upon activation of gene expression by phorbol ester (PMA). Using specific chemical and dominant negative expression constructs, we show that the MEK-ERK signaling pathway terminating at AP-1 transcription factors intersects with the epigenetic control of u-PAR expression by H2A.Z. Furthermore, we demonstrate that two other AP-1 targets (MMP9 gene and miR-21 microRNA) are also H2A.Z regulated. In conclusion, our work demonstrates that (i) the expression of two genes and a microRNA all implicated in tumor progression are directly regulated by H2A.Z and (ii) MEK-ERK signaling terminating at AP-1 intersects with the epigenetic control of target gene expression by H2A.Z.