A heterozygous patient with dysfibrinogenemia with slight bleeding and no thrombotic complications was diagnosed with fibrinogen Kyoto VI (K-VI). To elucidate the genetic mutation(s) and characterize the variant protein, we performed the following experiments and compared with identical and similar variants that have already been reported. The proposita's PCR-amplified DNA was analyzed by sequencing and her purified plasma fibrinogen underwent SDS-PAGE followed by immunoblotting, fibrin polymerization, and scanning electron microscopic observation of fibrin clot and fibers. Sequence analyses showed that K-VI fibrinogen substituted W (TGG) for terminal codon (TAG), resulting in 12 amino acid elongation 462-473 (WSPIRRFLLFCM) in the Bβ-chain. Protein analyses indicated that the presence of some albumin-binding variant fibrinogens and a dimeric molecule of variant fibrinogens reduced fibrin polymerization, with a thinner fiber and aberrant fibrin network. These results are almost the same as for the identical variant of Magdeburg, however, different from the similar variant of Osaka VI [12 amino acid elongation 462-473 (KSPIRRFLLFCM) in the Bβ-chain] in the presence of variant forms and clot structure. We speculate the side-chain difference at 462 residues, W in K-VI, K in Osaka VI, and/or the difference in the presence of disulfide bridged forms of variant fibrinogens, led to the notable difference in the fibrin bundle network. Although a strong evolutional and structural association between Bβ-chain and γ-chain molecules is established, the corresponding recombinant 15 residue elongation variants of the fibrinogen γ-chain showed reduced assembly and secretion.