We examined the efficacy of chemoendocrine therapy using capecitabine as a chemotherapeutic agent in premenopausal and postmenopausal models with estrogen receptor (ER)-positive human breast cancer xenografts. Tamoxifen and letrozole were used as endocrine therapeutic agents for premenopausal and postmenopausal models, respectively. The antitumor activity of capecitabine in combination was significantly superior to either monotherapy treatment in both premenopausal (p<0.01) and postmenopausal (p<0.05) models. No increase in toxicity in terms of body weight loss was observed during treatment in either of the xenograft models. In the premenopausal model, the level of thymidine phosphorylase (TP), a key enzyme generating 5-FU from capecitabine, was upregulated (p<0.05) in tumors by tamoxifen but not by letrozole treatment in the postmenopausal model. The combination of 5'-deoxy-5-fluorouridine (5'-DFUR; an intermediate of capecitabine) with 4-hydroxytamoxifen (4-OHT; an active form of tamoxifen) or letrozole was also evaluated in vitro by using estrogen-responsive element (ERE) reporter gene assays aimed to model premenopausal and postmenopausal breast cancer. Both combinations decreased the number of estrogen-responding cells in a concentration-dependent manner and further analysis by isobolograms revealed a synergistic effect of the combination of 5'-DFUR with 4-OHT, and at least an additive effect of the combination of 5'-DFUR with letrozole. These results suggest that chemoendocrine therapy using capecitabine may be a useful treatment modality for patients with hormone-receptor-positive breast cancer, regardless of the menopausal status and should be explored in clinical trials.