The transcriptional coactivators, PGC-1α and β, cooperate to maintain cardiac mitochondrial function during the early stages of insulin resistance

J Mol Cell Cardiol. 2012 Mar;52(3):701-10. doi: 10.1016/j.yjmcc.2011.10.010. Epub 2011 Oct 20.

Abstract

We previously demonstrated a cardiac mitochondrial biogenic response in insulin resistant mice that requires the nuclear receptor transcription factor PPARα. We hypothesized that the PPARα coactivator peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) is necessary for mitochondrial biogenesis in insulin resistant hearts and that this response was adaptive. Mitochondrial phenotype was assessed in insulin resistant mouse models in wild-type (WT) versus PGC-1α deficient (PGC-1α(-/-)) backgrounds. Both high fat-fed (HFD) WT and 6 week-old Ob/Ob animals exhibited a significant increase in myocardial mitochondrial volume density compared to standard chow fed or WT controls. In contrast, HFD PGC-1α(-/-) and Ob/Ob-PGC-1α(-/-) hearts lacked a mitochondrial biogenic response. PGC-1α gene expression was increased in 6 week-old Ob/Ob animals, followed by a decline in 8 week-old Ob/Ob animals with more severe glucose intolerance. Mitochondrial respiratory function was increased in 6 week-old Ob/Ob animals, but not in Ob/Ob-PGC-1α(-/-) mice and not in 8 week-old Ob/Ob animals, suggesting a loss of the early adaptive response, consistent with the loss of PGC-1α upregulation. Animals that were deficient for PGC-1α and heterozygous for the related coactivator PGC-1β (PGC-1α(-/-)β(+/-)) were bred to the Ob/Ob mice. Ob/Ob-PGC-1α(-/-)β(+/-) hearts exhibited dramatically reduced mitochondrial respiratory capacity. Finally, the mitochondrial biogenic response was triggered in H9C2 myotubes by exposure to oleate, an effect that was blunted with shRNA-mediated PGC-1 "knockdown". We conclude that PGC-1 signaling is important for the adaptive cardiac mitochondrial biogenic response that occurs during the early stages of insulin resistance. This response occurs in a cell autonomous manner and likely involves exposure to high levels of free fatty acids.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Cell Line
  • Female
  • Gene Expression
  • Glucose / metabolism
  • Insulin Resistance / genetics*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Mitochondria, Heart / genetics
  • Mitochondria, Heart / metabolism*
  • Mitochondria, Heart / ultrastructure
  • Myocytes, Cardiac / metabolism*
  • Organ Specificity / genetics
  • Oxygen Consumption
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
  • Systole / physiology
  • Trans-Activators / deficiency
  • Trans-Activators / genetics*
  • Trans-Activators / metabolism*
  • Transcription Factors
  • Transcription, Genetic

Substances

  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
  • Ppargc1a protein, mouse
  • Trans-Activators
  • Transcription Factors
  • Glucose