Fasciola hepatica causes biliary epithelial hyperplasia and obstructive jaundice in humans and animals. Using a planar lipid bilayer technique, we further characterized the single channel property of large conductance K(+)-permeable channels that were previously identified from F. hepatica. The single channel conductance was 254.7±17.9 pS under a symmetrical 200/200 mM (cis/trans) KCl gradient. Open state probability (P(o)) varied from channel to channel at a given membrane potential and Ca(2+) concentration, but increased with voltage (-60 to +40 mV) and cis Ca(2+) (1-200 μM). Under a near bi-ionic condition of 200 mM [K(+)](cis)/200 mM [Na(+)](trans), the permeability ratio of K(+) to Na(+) was 5.0. Charybdotoxin (1 μM) inhibited P(o), whereas tetraethylammonium reduced the conductance (K(D)=67.8mM). Taken together, the results show that the single channel properties of the large conductance K(+)-permeable channels in F. hepatica are similar to those of large conductance Ca(2+)-activated K(+) (BK) channels in general, but distinct from typical BK channels in the extent of voltage- and Ca(2+)-dependence, as well as permeability to Na(+). This study further reveals a variant BK channel in F. hepatica that could serve as a new drug target to treat fascioliasis.
Copyright © 2011 Elsevier B.V. All rights reserved.