We report on a gamma-ray coincidence analysis using a mixed array of hyperpure germanium and cerium-doped lanthanum tri-bromide (LaBr3:Ce) scintillation detectors to study nuclear electromagnetic transition rates in the pico-to-nanosecond time regime in 33,34P and 33S following fusion-evaporation reactions between an 18O beam and an isotopically enriched 18O implanted tantalum target. Energies from decay gamma-rays associated with the reaction residues were measured in event-by-event coincidence mode, with the measured time difference information between the pairs of gamma-rays in each event also recorded using the ultra-fast coincidence timing technique. The experiment used the good full-energy peak resolution of the LaBr3:Ce detectors coupled with their excellent timing responses in order to determine the excited state lifetime associated with the lowest lying, cross-shell, Iπ=4- "intruder" state previously reported in the N=19 isotone 34P. The extracted lifetime is consistent with a mainly single-particle M2 multipolarity associated with a f7/2→d5/2 single particle transition.
Copyright © 2011 Elsevier Ltd. All rights reserved.