We explored the potential of an emerging laser-based technology, photoacoustic imaging (PAI), for bladder cancer diagnosis through high-resolution imaging of microvasculature in the bladder tissues. Imaging results from ex vivo canine bladders demonstrated the excellent ability of PAI in mapping three-dimensional microvasculature in optically scattering bladder tissues. By comparing the results from human bladder specimens affected by cancer to those from the normal control, the feasibility of PAI to differentiate malignant from benign bladder tissues was also explored. The distinctive morphometric characteristics of tumor microvasculature can be seen in the images from cancer samples, suggesting that PAI may allow in vivo assessment of neoangiogenesis that is closely associated with bladder cancer generation and progression. By presenting subsurface morphological and physiological information in bladder tissues, PAI, when performed in a similar way as in conventional endoscopy, provides an opportunity for improved diagnosis, staging, and treatment guidance of bladder cancer.