Studying how the brain develops and becomes functional is important to understand how the man has been able to develop specific cognitive abilities, and to comprehend the complexity of some developmental pathologies. Thanks to magnetic resonance imaging (MRI), it is now possible to image the baby's immature brain and to consider subtle correlations between the brain anatomical development and the early acquisition of cognitive functions. Dedicated methodologies for image acquisition and post-treatment must then be used because the size of cerebral structures and the image contrast are very different in comparison with the adult brain, and because the examination length is a major constraint. Two recent studies have evaluated the developing brain under an original perspective. The first one has focused on cortical folding in preterm newborns, from 6 to 8 months of gestational age, assessed with T2-weighted conventional MRI. The second study has mapped the organization and maturation of white matter fiber bundles in 1- to 4-month-old healthy infants with diffusion tensor imaging (DTI). Both studies have enabled to highlight spatio-temporal differences in the brain regions' maturation, as well as early anatomical asymmetries between cerebral hemispheres. These studies emphasize the potential of MRI to evaluate brain development compared with the infant's psychomotor acquisitions after birth.
Copyright © 2011 Elsevier Masson SAS. All rights reserved.