Novel SHG effective inorganic open-framework chalcohalides, Ba(3)AGa(5)Se(10)Cl(2) (A = Cs, Rb and K), have been synthesized by high temperature solid state reactions. These compounds crystallize in the tetragonal space group I ̅4 (No.82) with a = b = 8.7348(6) - 8.6341(7) Å, c = 15.697(3) - 15.644(2) Å, V = 1197.6(3) - 1166.2(2) Å(3) on going from Cs to K. The polar framework of (3)(∞)[Ga(5)Se(10)](5-) is constructed by nonpolar GaSe(4)(5- )tetrahedron (T1) and polar supertetrahedral cluster Ga(4)Se(10)(8-) (T2) in a zinc-blende topological structure with Ba/A cations and Cl anions residing in the tunnels. Remarkably, Ba(3)CsGa(5)Se(10)Cl(2) exhibits the strongest intensity at 2.05 μm (about 100 times that of the benchmark AgGaS(2) in the particle size of 30-46 μm) among chalcogenides, halides, and chalcohalides. Furthermore, these compounds are also the first open-framework compounds with red photoluminescent emissions. The Vienna ab initio theoretical studies analyze electronic structures and linear and nonlinear optical properties.
© 2012 American Chemical Society