Aims: CYP2C19 variant alleles are independent predictors of clopidogrel response variability and occurrence of major adverse cardiovascular events in high-risk vascular patients on clopidogrel therapy. Increasing evidence suggests a combination of platelet function testing with CYP2C19 genetic testing may be more effective in identifying high-risk individuals for alternative antiplatelet therapeutic strategies. A crucial point in evaluating the use of these polymorphisms in clinical practice, besides test accuracy, is the cost of the genetic test and rapid availability of the results. One hundred acute coronary syndrome patients were genotyped for CYP2C19*2,*3,*4,*5, and *17 polymorphisms with two platforms: Verigene(®) and the TaqMan(®) system.
Results: Genotyping results obtained by the classical TaqMan approach and the rapid Verigene approach showed a 100% concordance for all the five polymorphisms investigated. The Verigene system had shorter turnaround time with respect to TaqMan. The cost of reagents for TaqMan genotyping was lower than that for the Verigene system, but the effective manual staff involvement and the relative cost resulted in higher cost for TaqMan than for Verigene.
Conclusions: The Verigene system demonstrated good performance in terms of turnaround time and cost for the evaluation of the clopidogrel poor metabolizer status, giving genetic information in suitable time (206 min) for a therapeutic strategy decision.