The objective of this experiment was to examine the effect of castration technique on daily feed intake (DFI), daily water intake (DWI), growth performance, residual feed intake (RFI), and inflammatory response in weaned beef calves. Seventy-five beef calves (214 ± 3.2 kg; 200 ± 26 d of age) were housed in a GrowSafe 4000 feed intake facility 7 d post weaning (15 calves/pen). Calves were offered a total mixed ration (TDN = 67.3% and CP = 12.2%, DM = 89%) for ad libitum consumption. On d 0, calves were assigned to 1 of 5 treatments (n = 15 calves/treatment): 1) steers castrated surgically pre-weaning (52 d of age; CON); 2) intact bulls (BULL); 3) bulls castrated by the Callicrate Bander on d 0 (No-Bull Enterprises LLC.; BAN); 4) bulls castrated by the Henderson Castrating Tool on d 0 (Stone Mfg & Supply Co.; HEN); and 5) bulls castrated surgically utilizing an emasculator on d 0 (SUR). Average daily gain, DFI, and DWI were recorded over 84 d. Blood was collected from a sub-sample of calves (n = 45) on d 0, 2, 6, 9, 12, and 15 relative to castration. Castration decreased (P = 0.06) ADG for castrates compared with CON from d 0 to 14 but not d 0 to 84. Daily feed intake and DWI were similar (P > 0.10) among treatments during d 0 to 84. Gain:feed was not affected by castration technique; however, RFI tended (P = 0.09) to be negative for CON and BULL compared with castrates on d 0 to 14 but not d 0 to 84. Acute phase protein analyses indicated that surgical castration (SUR or HEN) elicited a short-term inflammatory response in calves, whereas calves castrated with BAN elicited a delayed response. Calves castrated pre-weaning had improved d 0 to 14 ADG, feed intake, and inflammation response compared with calves castrated at weaning. Banding elicited a delayed negative response in ADG, DWI, and inflammation. In weaned calves, castration method did not affect performance, DFI, DWI, or inflammatory response during the 84-d trial.