The goal of this study is to propose a methodology for evaluating recovery mechanisms in subacute and chronic post-stroke patients after a robot-aided upper-limb therapy, using a set of biomechanical parameters. Fifty-six post-stroke subjects, thirteen subacute and forty-three chronic patients participated in the study. A 2 dof robotic system, implementing an "assist-as-needed" control strategy, was used. Biomechanical parameters related (i) to the speed measured at the robot's end-effector and (ii) to the movement's smoothness were computed. Outcome clinical measures show a decrease in motor impairment after the treatment both in chronic and subacute patients. All the biomechanical parameters show an improvement between admission and discharge. Our results show that the robot-aided training can contribute to reduce the motor impairment in both subacute and chronic patients and identify neurophysiological mechanisms underlying the different stages of motor recovery.
© 2011 IEEE