Recent advances in pneumococcal peptidoglycan biosynthesis suggest new vaccine and antimicrobial targets

Curr Opin Microbiol. 2012 Apr;15(2):194-203. doi: 10.1016/j.mib.2011.12.013. Epub 2012 Jan 24.

Abstract

Streptococcus pneumoniae is a serious human respiratory pathogen that has the capacity to evade capsule-based vaccines and to develop multidrug antibiotic resistance. This review summarizes recent advances in understanding the mechanisms and regulation of peptidoglycan (PG) biosynthesis that result in ellipsoid-shaped, ovococcus Streptococcus cells. New results support a two-state model for septal and peripheral PG synthesis at mid-cell, involvement of essential cell division proteins in PG remodeling, and mid-cell localization of proteins that organize PG biosynthesis and that form the protein translocation apparatus. PG biosynthesis proteins have already turned up as promising vaccine candidates and targets of antibiotics. Properties of several recently characterized proteins that mediate or regulate PG biosynthesis suggest a source of additional targets for therapies against pneumococcus.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Anti-Bacterial Agents / pharmacology*
  • Bacterial Proteins / drug effects*
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Gene Expression Regulation, Bacterial
  • Humans
  • Peptidoglycan / biosynthesis*
  • Pneumococcal Infections / prevention & control
  • Pneumococcal Vaccines / pharmacology*
  • Streptococcus pneumoniae / genetics
  • Streptococcus pneumoniae / metabolism*

Substances

  • Anti-Bacterial Agents
  • Bacterial Proteins
  • Peptidoglycan
  • Pneumococcal Vaccines