A mutation in the LMNA gene is responsible for the most dramatic form of premature aging, Hutchinson-Gilford progeria syndrome (HGPS). Several recent studies have suggested that protein products of this gene might have a role in normal physiological cellular senescence. To explore further LMNA's possible role in normal aging, we genotyped 16 SNPs over a span of 75.4 kb of the LMNA gene on a sample of long-lived individuals (LLI) (US Caucasians with age ≥ 95 years, N=873) and genetically matched younger controls (N=443). We tested all common nonredundant haplotypes (frequency ≥ 0.05) based on subgroups of these 16 SNPs for association with longevity. The most significant haplotype, based on four SNPs, remained significant after adjustment for multiple testing (OR=1.56, P=2.5 × 10(-5) , multiple-testing-adjusted P=0.0045). To attempt to replicate these results, we genotyped 3619 subjects from four independent samples of LLI and control subjects from (i) the New England Centenarian Study (NECS) (N=738), (ii) the Southern Italian Centenarian Study (SICS) (N=905), (iii) France (N=1103), and (iv) the Einstein Ashkenazi Longevity Study (N= 702). We replicated the association with the most significant haplotype from our initial analysis in the NECS sample (OR=1.60, P=0.0023), but not in the other three samples (P > 0.15). In a meta-analysis combining all five samples, the best haplotype remained significantly associated with longevity after adjustment for multiple testing in the initial and follow-up samples (OR=1.18, P=7.5 × 10(-4) , multiple-testing-adjusted P=0.037). These results suggest that LMNA variants may play a role in human lifespan.
© 2012 The Authors. Aging Cell © 2012 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.