Energy gaps in Bi(2)Sr(2)CaCu(2)O(8+δ) cuprate superconductors

Sci Rep. 2012:2:248. doi: 10.1038/srep00248. Epub 2012 Feb 6.

Abstract

The relationship between the cuprate pseudogap (Δ(p)) and superconducting gap (Δ(s)) remains an unsolved mystery. Here, we present a temperature- and doping-dependent tunneling study of submicron Bi(2)Sr(2)CaCu(2)O(8+δ) intrinsic Josephson junctions, which provides a clear evidence that Δ(s) closes at a temperature T(c) (0) well above the superconducting transition temperature T(c) but far below the pseudogap opening temperature T*. We show that the superconducting pairing first occurs predominantly on a limited Fermi surface near the node below T(c) (0), accompanied by a Fermi arc due to the lifetime effects of quasiparticles and Cooper pairs. The arc length has a linear temperature dependence, and as temperature decreases below T(c) it reduces to zero while pairing spreads to the antinodal region of the pseudogap leading to a d-wave superconducting gap on the entire Fermi surface at lower temperatures.