We investigate established theoretical approaches for the determination of electron energy loss spectra (EELS) and inelastic mean free paths (IMFPs) in solids. In particular, we investigate effects of alternate descriptions of the many plasmon resonances that define the energy loss function (ELF), and the contribution of lifetime broadening in these resonances to the IMFP. We find that despite previously claimed agreement between approaches, approximations of different models consistently conspire to underestimate electron scattering for energies below 100 eV, leading to significant overestimates of the IMFP in this regime.