A membrane-bound cytochrome b, a heterodimer formed by a 91-kD glycoprotein (heavy chain) and a 22-kD polypeptide (light chain), is an essential component of the phagocyte NADPH-oxidase responsible for superoxide generation. Cytochrome b is absent in two subgroups of chronic granulomatous disease (CGD), an inherited disorder characterized by the lack of oxidase activity. Mutations in the cytochrome heavy chain gene, encoded by the CYBB locus in Xp21.1, result in the X-linked form of CGD. A rare subgroup of autosomal recessive CGD also lacks cytochrome b (A- CGD), but the genetic defect has not previously been identified. In order to search for possible mutations in the cytochrome light chain locus, CYBA, the structure of this gene was characterized. The CYBA locus was localized to 16q24, and the approximately 600-bp open reading frame determined to be encoded by six exons that span approximately 8.5 kb. Three unrelated patients with A- CGD were studied for evidence of mutations in the light chain gene. One patient, whose parents were first cousins, was homozygous for a large deletion that removed all but the extreme 5' coding sequence of the gene. The other two patients had a grossly normal light chain transcript on Northern blot of mononuclear cell RNA. The light chain transcript was amplified by the polymerase chain reaction and sequenced. One patient was a compound heterozygote for two alleles containing point mutations in the open reading frame that predict a frame shift and a nonconservative amino acid replacement, respectively. The second patient, whose parents were second cousins, was homozygous for a different single-base substitution resulting in another nonconservative amino acid change. These results indicate that A- CGD can results from defects in the gene encoding the 22-kD light chain of the phagocyte cytochrome b.