Because multiple symptoms associated with "sickness behavior" have a negative impact on functional status and quality of life, increased information on the mechanisms that underlie inter-individual variability in this symptom experience is needed. The purposes of this study were to determine: if distinct classes of individuals could be identified based on their experience with pain, fatigue, sleep disturbance, and depression; if these classes differed on demographic and clinical characteristics; and if variations in pro- and anti- inflammatory cytokine genes were associated with latent class membership. Self-report measures of pain, fatigue, sleep disturbance, and depression were completed by 168 oncology outpatients and 85 family caregivers (FCs). Using latent class profile analysis (LCPA), three relatively distinct classes were identified: those who reported low depression and low pain (83%), those who reported high depression and low pain (4.7%), and those who reported high levels of all four symptoms (12.3%). The minor allele of IL4 rs2243248 was associated with membership in the "All high" class along with younger age, being White, being a patient (versus a FC), having a lower functional status score, and having a higher number of comorbid conditions. Findings suggest that LPCA can be used to differentiate distinct phenotypes based on a symptom cluster associated with sickness behavior. Identification of distinct phenotypes provides new evidence for the role of IL4 in the modulation of a sickness behavior symptom cluster in oncology patients and their FCs.
Copyright © 2012 Elsevier Ltd. All rights reserved.