Estrogen receptor-beta and breast cancer: translating biology into clinical practice

Steroids. 2012 Jun;77(7):727-37. doi: 10.1016/j.steroids.2012.03.008. Epub 2012 Mar 29.

Abstract

Estrogen receptor (ER) β was discovered over a decade ago. The design of most studies on this receptor was based on knowledge of its predecessor, ERα. Although breast cancer (BCa) has been a main focus of ERβ research, its precise roles in breast carcinogenesis remain elusive. Data from in vitro models have not always matched those from observational or clinical studies. Several inherent factors may contribute to these discrepancies: (a) several ERβ spliced variants are expressed at the protein level, and isoform-specific antibodies are unavailable for some variants; (b) post-translational modifications of the receptor regulate receptor functions; (c) the role of the receptor differs significantly depending on the type of ligands, cis-elements, and co-regulators that interact with the receptor; and (d) the diversity of distribution of the receptor among intracellular organelles of BCa cells. This review addresses the gaps in knowledge in ERβ research as it pertains to BCa regarding the following questions: (1) is ERβ a tumor suppressor in BCa?; (2) do ERβ isoforms play differential roles in breast carcinogenesis?; (3) do nuclear signaling and extranuclear ERβ signaling differ in BCa?; (4) what are the consequences of post-translational modifications of ERβ in BCa?; (5) how do co-regulators and interacting proteins increase functional diversity of ERβ?; and (6) how do the types of ligand and regulatory cis-elements affect the action of ERβ in BCa?. Insights gained from these key questions in ERβ research should help in prevention, diagnosis/prognosis, and treatment of BCa.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Breast Neoplasms / pathology
  • Breast Neoplasms / physiopathology*
  • Estrogen Receptor beta / genetics
  • Estrogen Receptor beta / metabolism
  • Estrogen Receptor beta / physiology*
  • Female
  • Humans
  • Protein Processing, Post-Translational
  • RNA Splicing
  • Signal Transduction
  • Subcellular Fractions / metabolism

Substances

  • Estrogen Receptor beta