Purpose of review: This review covers the articles published between 2010 and early 2011 that presented new findings on inner-ear efferents and their ability to modulate hair cell function.
Recent findings: Studies published within the review period have increased our understanding of efferent mechanisms on hair cells in the cochlear and vestibular sensory epithelium and provide insights on efferent contributions to the plasticity of bilateral auditory processing. The central nervous system controls the sensitivity of hair cells to physiological stimuli by regulating the gain of hair cell electromechanical amplification and modulating the efficiency of hair cell-eighth nerve transmission. A notable advance in the last year has been animal and human studies that have examined the contribution of the olivocochlear efferents to sound localization, particularly in a noisy environment.
Summary: Acoustic activation of olivocochlear fibers provides a clinical test for the integrity of the peripheral auditory system and has provided new understanding about the function and limitations of the cochlear amplifier. Although similar tests may be possible in the efferent vestibular system, they have not yet been developed. The structural and functional similarities of the sensory epithelia in the inner ear offer hope that testing procedures may be developed that will allow reliable testing of the vestibular hair cell function.