Porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses in the pig industry worldwide. Currently available commercial vaccines provide limited protection due to delayed and weak cell-mediated immunity and neutralizing antibody production, thus the immunomodulators should be considered in order to improve the efficacy of PRRSV vaccines. Heat shock protein gp96 may be used as a modulator to enhance both innate and adaptive immune responses. In the present study, two multi-epitope subunit vaccines, named as Cp1 and Cp2, were designed based on the conserved B cell epitopes of viral proteins with the N-terminal 22-370 amino acids (aa) of porcine gp96 (Gp96N) chosen as the adjuvant. Immune responses elicited by the different combinations of Cp1/Cp2 and Gp96N were examined in mice and piglets. The results indicated that the group of Cp1/Cp2-Gp96N (CG) combination induced 3-4-fold higher titers of Cp1/Cp2-ELISA antibodies and neutralizing antibodies (NAs) in mice than the groups which received Cp1/Cp2 immunization alone or with Freund's adjuvant. Additionally, Gp96N significantly enhanced the levels of lymphocyte proliferative responses of splenocytes or peripheral blood mononuclear cells from vaccinated mice or piglets. The production of IFN-γ in mice splenocytes, TNF-α, IFN-γ, and IL-12 in sera of piglets were also remarkably increased with the treatment of Gp96N, while IL-4 was reduced by half and IL-10 was decreased to an undetectable level. These results suggest that the porcine Gp96N could effectively enhance the innate and adaptive immune responses of Cp1/Cp2 with a Th1-type bias. Therefore, the multi-epitope subunit vaccine Cp1/Cp2 co-administered with porcine Gp96N might potentially be a promising candidate vaccine for the prevention and control of PRRSV in pigs.
Copyright © 2012 Elsevier B.V. All rights reserved.