Conservation analysis of dengue virus T-cell epitope-based vaccine candidates using Peptide block entropy

Front Immunol. 2011 Dec 20:2:69. doi: 10.3389/fimmu.2011.00069. eCollection 2011.

Abstract

Broad coverage of the pathogen population is particularly important when designing CD8+ T-cell epitope vaccines against viral pathogens. Traditional approaches are based on combinations of highly conserved T-cell epitopes. Peptide block entropy analysis is a novel approach for assembling sets of broadly covering antigens. Since T-cell epitopes are recognized as peptides rather than individual residues, this method is based on calculating the information content of blocks of peptides from a multiple sequence alignment of homologous proteins rather than using the information content of individual residues. The block entropy analysis provides broad coverage of variant antigens. We applied the block entropy analysis method to the proteomes of the four serotypes of dengue virus (DENV) and found 1,551 blocks of 9-mer peptides, which cover 99% of available sequences with five or fewer unique peptides. In contrast, the benchmark study by Khan et al. (2008) resulted in 165 conserved 9-mer peptides. Many of the conserved blocks are located consecutively in the proteins. Connecting these blocks resulted in 78 conserved regions. Of the 1551 blocks of 9-mer peptides 110 comprised predicted HLA binder sets. In total, 457 subunit peptides that encompass the diversity of all sequenced DENV strains of which 333 are T-cell epitope candidates.

Keywords: antigenic diversity; epitope-based vaccines; immunoinformatics; polyvalent vaccines; reverse vaccinology; vaccine informatics.