Regulated transgene expression may reduce transgene-specific and genotoxic risks associated with gene therapy. To prove this concept, we have investigated the suitability of doxycycline (Dox)-inducible human cytidine deaminase (hCDD) overexpression from lentiviral vectors to mediate effective myeloprotection while circumventing the lymphotoxicity observed with constitutive CDD activity. Rapid Dox-mediated transgene induction associated with a 6-17-fold increase in drug resistance was observed in 32D and primary murine bone marrow (BM) cells. Moreover, robust Dox-regulated transgene expression in the entire haematopoietic system was demonstrated for primary and secondary recipients of hCDD-transduced R26-M2rtTA transgenic BM cells. Furthermore, mice were significantly protected from myelosuppressive chemotherapy as evidenced by accelerated recovery of granulocytes (1.9±0.6 vs 1.3±0.3, P=0.034) and platelets (883±194 vs 584±160 10(3) per μl, P=0.011). Minimal transgene expression in the non-induced state and no overt cellular toxicities including lymphotoxicity were detected. Thus, using a relevant murine transplant model our data provide conclusive evidence that drug-resistance transgenes can be expressed in a regulated fashion in the lymphohaematopoietic system, and that Dox-inducible systems may be used to reduce myelotoxic side effect of anticancer chemotherapy or to avoid side effects of high constitutive transgene expression.