Comprehensive X-ray absorption near-edge structure spectroscopy at the C, O and Li K-edges and the Mn, Fe, and P L-edges of LiMn(0.75)Fe(0.25)PO(4) nanorods-graphene has been reported in great detail. Compared to that of free standing graphene and LiMn(0.75)Fe(0.25)PO(4), the intimate interaction between the nanorods and graphene via charge redistribution has been unambiguously confirmed. This interaction not only anchors the nanorods onto the graphene but also modifies its surface chemistry, both of which afford the nanorods-graphene hybrid an ultra-high rate performance in lithium ion batteries. Such knowledge is important for the understanding of hybrid nanomaterials for lithium ion batteries and allows rational design for further improvements in performance.