Breast carcinoma and Lynch syndrome: molecular analysis of tumors arising in mutation carriers, non-carriers, and sporadic cases

Breast Cancer Res. 2012 Jun 12;14(3):R90. doi: 10.1186/bcr3205.

Abstract

Introduction: Breast carcinoma is the most common cancer in women, but its incidence is not increased in Lynch syndrome (LS) and studies on DNA mismatch repair deficiency (MMR) in LS-associated breast cancers have arrived at conflicting results. This study aimed to settle the question as to whether breast carcinoma belongs to the LS tumor spectrum.

Methods: MMR status and epigenetic profiles were determined for all available breast carcinomas identified among 200 LS families from a nation-wide registry (23 tumors from mutation carriers and 18 from non-carriers). Sporadic breast carcinomas (n = 49) and other cancers (n = 105) from MMR gene mutation carriers were studied for comparison.

Results: The proportion of breast carcinomas that were MMR-deficient based on absent MMR protein, presence of microsatellite instability, or both was significantly (P = 0.00016) higher among breast carcinomas from mutation carriers (13/20, 65%) compared to non-carriers (0/14, 0%). While the average age at breast carcinoma diagnosis was similar in carriers (56 years) and non-carriers (54 years), it was lower for MMR-deficient versus proficient tumors in mutation carriers (53 years versus 61 years, P = 0.027). Among mutation carriers, absent MMR protein was less frequent in breast carcinoma (65%) than in any of seven other tumor types studied (75% to 100%). Tumor suppressor promoter methylation patterns were organ-specific and similar between breast carcinomas from mutation carriers and non-carriers.

Conclusions: Breast carcinoma from MMR gene mutation carriers resembles common breast carcinoma in many respects (for example, general clinicopathological and epigenetic profiles). MMR status makes a distinction: over half are MMR-deficient typical of LS spectrum tumors, while the remaining subset which is MMR-proficient may develop differently. The results are important for appropriate surveillance in mutation carriers and may be relevant for LS diagnosis in selected cases.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptor Proteins, Signal Transducing / genetics
  • Adenosine Triphosphatases / genetics
  • Breast Neoplasms / complications
  • Breast Neoplasms / genetics*
  • Colorectal Neoplasms, Hereditary Nonpolyposis / complications
  • Colorectal Neoplasms, Hereditary Nonpolyposis / genetics*
  • DNA Mismatch Repair / genetics*
  • DNA Repair Enzymes / genetics
  • DNA-Binding Proteins / genetics
  • Female
  • Gene Deletion
  • Humans
  • Microsatellite Instability
  • Mismatch Repair Endonuclease PMS2
  • MutL Protein Homolog 1
  • MutS Homolog 2 Protein / genetics
  • Mutation
  • Nuclear Proteins / genetics

Substances

  • Adaptor Proteins, Signal Transducing
  • DNA-Binding Proteins
  • G-T mismatch-binding protein
  • MLH1 protein, human
  • Nuclear Proteins
  • Adenosine Triphosphatases
  • PMS2 protein, human
  • MSH2 protein, human
  • Mismatch Repair Endonuclease PMS2
  • MutL Protein Homolog 1
  • MutS Homolog 2 Protein
  • DNA Repair Enzymes