Stroke leads to motor asymmetries in the flexor and extensor muscles of the hand. Typically, the strength deficits in the extensors are greater than the flexors. The impact of differential motor abilities of these muscle groups on the execution of bimanual force control tasks in individuals with stroke is unknown. The primary purpose of this study was to determine the influence of task constraints on visually guided bimanual force control in chronic stroke. Stroke survivors and age-matched individuals performed bimanual isometric contractions for 20s to match target submaximal force levels. Online visual feedback of the total force (sum of the forces produced by both hands) was provided. The task constraints were manipulated by (a) finger extension, and (b) finger flexion (power grip). Force asymmetry was indexed by the proportion of force contributed by the paretic hand to the total force. The stroke group demonstrated task-specific asymmetry in bimanual force control. Specifically, the paretic hand contributed less force than the non-paretic hand in finger extension whereas this relationship was reversed in power grip. Importantly, regardless of the nature of the task, reduction in motor impairments was associated with increased symmetry and coordination in bimanual tasks. Further, bimanual submaximal grip force control revealed asymmetry and coordination deficits that are not identified by investigating bimanual maximal force production alone. The motor control strategy adopted to optimize performance on bimanual tasks revealed the altered force production of the paretic hand due to the combined effect of extensor weakness and enhanced flexor bias following stroke. Bimanual asymmetries in stroke survivors highlight the need for identifying and treating the task-specific impairments for maximizing motor recovery post stroke.
Copyright © 2012 Elsevier Ltd. All rights reserved.