In situ coarsening study of inverse micelle-prepared Pt nanoparticles supported on γ-Al2O3: pretreatment and environmental effects

Phys Chem Chem Phys. 2012 Aug 28;14(32):11457-67. doi: 10.1039/c2cp41339f. Epub 2012 Jul 17.

Abstract

The thermal stability of inverse micelle prepared Pt nanoparticles (NPs) supported on nanocrystalline γ-Al(2)O(3) was monitored in situ under different chemical environments (H(2), O(2), H(2)O) via extended X-ray absorption fine-structure spectroscopy (EXAFS) and ex situ via scanning transmission electron microscopy (STEM). Drastic differences in the stability of identically synthesized NP samples were observed upon exposure to two different pre-treatments. In particular, exposure to O(2) at 400 °C before high temperature annealing in H(2) (800 °C) was found to result in the stabilization of the inverse micelle prepared Pt NPs, reaching a maximum overall size after moderate coarsening of ∼1 nm. Interestingly, when an analogous sample was pre-treated in H(2) at ∼400 °C, a final size of ∼5 nm was reached at 800 °C. The beneficial role of oxygen in the stabilization of small Pt NPs was also observed in situ during annealing treatments in O(2) at 450 °C for several hours. In particular, while NPs of 0.5 ± 0.1 nm initial average size did not display any significant sintering (0.6 ± 0.2 nm final size), an analogous thermal treatment in hydrogen leads to NP coarsening (1.2 ± 0.3 nm). The same sample pre-dosed and annealed in an atmosphere containing water only displayed moderate sintering (0.8 ± 0.3 nm). Our data suggest that PtO(x) species, possibly modifying the NP/support interface, play a role in the stabilization of small Pt NPs. Our study reveals the enhanced thermal stability of inverse micelle prepared Pt NPs and the importance of the sample pre-treatment and annealing environment in the minimization of undesired sintering processes affecting the catalytic performance of nanosized particles.