Establishment of single-cell screening system for the rapid identification of transcriptional modulators involved in direct cell reprogramming

Nucleic Acids Res. 2012 Nov;40(21):e165. doi: 10.1093/nar/gks732. Epub 2012 Aug 8.

Abstract

Combinatorial interactions of transcription modulators are critical to regulate cell-specific expression and to drive direct cell reprogramming (e.g. trans-differentiation). However, the identification of key transcription modulators from myriad of candidate genes is laborious and time consuming. To rapidly identify key regulatory factors involved in direct cell reprogramming, we established a multiplex single-cell screening system using a fibroblast-to-monocyte transition model. The system implements a single-cell 'shotgun-transduction' strategy followed by nested-single-cell-polymerase chain reaction (Nesc-PCR) gene expression analysis. To demonstrate this, we simultaneously transduced 18 monocyte-enriched transcription modulators in fibroblasts followed by selection of single cells expressing monocyte-specific CD14 and HLA-DR cell-surface markers from a heterogeneous population. Highly multiplex Nesc-PCR expression analysis revealed a variety of gene combinations with a significant enrichment of SPI1 (86/86) and a novel transcriptional modulator, HCLS1 (76/86), in the CD14(+)/HLA-DR(+) single cells. We could further demonstrate the synergistic role of HCLS1 in regulating monocyte-specific gene expressions and phagocytosis in dermal fibroblasts in the presence of SPI1. This study establishes a platform for a multiplex single-cell screening of combinatorial transcription modulators to drive any direct cell reprogramming.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Transdifferentiation / genetics*
  • Cells, Cultured
  • Fibroblasts / metabolism
  • Gene Expression
  • Humans
  • Lentivirus / genetics
  • Monocytes / metabolism
  • Proto-Oncogene Proteins / genetics
  • Proto-Oncogene Proteins / metabolism
  • Single-Cell Analysis / methods*
  • Trans-Activators / genetics
  • Trans-Activators / metabolism
  • Transcription, Genetic*

Substances

  • Proto-Oncogene Proteins
  • Trans-Activators
  • proto-oncogene protein Spi-1