Introducing therapeutic genes into hematopoietic stem cells using retroviral vector-mediated gene transfer is an effective treatment for monogenic diseases. The risks of therapeutic gene integration include aberrant expression of a neighboring gene, resulting in oncogenesis at low frequencies (10(-7)-10(-6)/transduced cell). Mechanisms governing insertional mutagenesis are the subject of intensive ongoing studies that produce large amounts of sequencing data representing genomic regions flanking viral integration sites (IS). Validating and analyzing these data require automated bioinformatics applications. The exact methods used vary between applications, based on the requirements and preferences of the designer. The parameters used to analyze sequence data are capable of shaping the resulting integration site annotations, but a comprehensive examination of these effects is lacking. Here we present a web-based tool for integration site analysis, called Methods for Analyzing ViRal Integration Collections (MAVRIC), and use its highly customizable interface to look at how IS annotations can vary based on the analysis parameters. We used the integration data of the previously published adenosine deaminase severe combined immunodeficiency (ADA-SCID) gene therapy trials for evaluation of MAVRIC. The output illustrates how MAVRIC allows for direct multiparameter comparison of integration patterns. Careful analysis of the SCID data and reanalyses using different parameters for trimming, alignment, and repeat masking revealed the degree of variation that can be expected to arise due to changes in these parameters. We observed mainly small differences in annotation, with the largest effects caused by masking repeat sequences and by changing the size of the window around the IS.