Hemozoin accumulation in Garnham bodies of Plasmodium falciparum gametocytes

Parasitol Res. 2012 Dec;111(6):2353-9. doi: 10.1007/s00436-012-3090-8. Epub 2012 Aug 28.

Abstract

Garnham bodies are curious objects exclusive in erythrocytes containing sexual forms (gametocytes) of Plasmodium falciparum. Although the name is familiar, only a few photographs of Garnham bodies (G-bodies) have been published. Considering that other objects in malaria-infected erythrocytes, such as Schuffner's dots of Plasmodium vivax and Maurer's clefts of P. falciparum, have been found to have some functions, it has become necessary to pay closer attention to G-bodies. The present study presents previously unknown features of G-bodies and suggests a protective role for them. Wild isolates of P. falciparum were encouraged to grow in vitro under conditions that promote gametocytogenesis. Thin and thick smears of the cells were stained with Giemsa stain and examined under a light microscope. Production of G-bodies was detected in two isolates both in immature and mature gametocytes. Sometimes, the objects are found both at the top and below the parasite, contrary to previous suggestion of it being only on one side. They are highly diverse in morphology, including those that are shaped like m or S. Hemozoin accumulation was detected in some of the bodies, indicating direct opening into the cystoplasm of the parasite. It is possible that hemozoin was first produced in the parasite's food vacuole before being transported to G-bodies. Alternatively, hemoglobin transport vesicles could first accumulate in G-bodies where metabolically released ferriprotoporphyrin IX (FP) could be polymerized; but this would need acidic environment comparable to that in food vacuole. Electron microscopy has revealed that G-bodies consist of membranous whorls and it has been demonstrated experimentally that both infected and uninfected membranes promote β-hematin formation. Whatever the mechanism, storing hemozoin in G-bodies outside the cytoplasm of the parasite could provide intraerythrocytic sexual forms of P. falciparum additional protection against FP toxicity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Erythrocytes / cytology*
  • Erythrocytes / parasitology*
  • Hemeproteins / metabolism*
  • Hemeproteins / ultrastructure
  • Microscopy
  • Plasmodium falciparum / metabolism*

Substances

  • Hemeproteins
  • hemozoin