Optimal nitrogen (N) supply is critical for achieving high grain yield of maize. It is well established that N deficiency significantly reduces grain yield and N oversupply reduces N use efficiency without significant yield increase. However, the underlying proteomic mechanism remains poorly understood. The present field study showed that N deficiency significantly reduced ear size and dry matter accumulation in the cob and grain, directly resulting in a significant decrease in grain yield. The N content, biomass accumulation, and proteomic variations were further analysed in young ears at the silking stage under different N regimes. N deficiency significantly reduced N content and biomass accumulation in young ears of maize plants. Proteomic analysis identified 47 proteins with significant differential accumulation in young ears under different N treatments. Eighteen proteins also responded to other abiotic and biotic stresses, suggesting that N nutritional imbalance triggered a general stress response. Importantly, 24 proteins are involved in regulation of hormonal metabolism and functions, ear development, and C/N metabolism in young ears, indicating profound impacts of N nutrition on ear growth and grain yield at the proteomic level.